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Rapid Communication

Natural Product Research

Anti-diabetic and anti-urease inhibition potential of 
Amomum dealbatum Roxb. seeds through a bioassay-
guided approach

Hage Soniaa,b , Nilamoni Chellenga,b , Nazim Uddin Afzala,b , Prasenjit 
Mannab,c , Minakshi Puzarid , Pankaj Chetiad  and Chandan Tamulya,b 
aCSIR-North East Institute of Science and Technology, Arunachal, India; bAcademy of Scientific and 
Innovative Research, Ghaziabad, India; cCSIR-North East Institute of Science and Technology, Jorhat, India; 
dDepartment of Life Sciences, Dibrugarh University, Dibrugarh, India

ABSTRACT
Using HPLC-PDA and HRMS analysis, five compounds p-coumaric 
acid, sinapic acid, quercetin, trans-ferulic and gallic acid were iden-
tified in seeds of Amomum dealbatum Roxb. The GC-MS analysis 
identified 1-dodecanol, phenol, 3,5-bis(1,1-dimethylethyl), Oleic 
Acid and 1-Heptacosanol which possess anti-diabetic properpties. 
A bioassay-guided technique was used to determine the degree 
of inhibition that A. dealbatum seeds crude methanol extract and 
its most active sub-fraction had against the α-glucosidase and 
Helicobacter pylori urease enzymes. In the Rat L6 myoblast cell 
line, glucose absorption through the GLUT4 transporter of most 
active subfraction (EASF80) was examined. According to a molec-
ular docking investigation, these compounds strongly interacted 
with the GLUT4 transporter, H pylori and α-glucosidase enzyme. 
Sinapic acid interacted most strongly with the H. pylori urease 
enzyme while gallic acid interacted with both the α-glucosidase 
enzyme and the GLUT4 transporter. Additionally, a molecular dock-
ing simulation study was carried out to recognise the stability of 
the complexes.
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1.  Introduction

Diabetes Mellitus (DM) is a metabolic disorder that are brought on by chronic hyper-
glycaemia (high blood glucose level). It has become a serious epidemic during the 
past few years. The International Diabetes Federation (IDF) predicts that by 2045, 783 
million adults worldwide will have diabetes, with one in ten having the condition as 
per the literature report (International Diabetes Federation 2021). Over time, persistent 
hyperglycaemia can damage several organs, including the kidneys, blood vessels, eyes, 
heart, etc. (Canivell and Gomis 2014). About 90–95% of cases of diabetes are due to 
type 2 diabetes mellitus (T2DM) which is associated with insulinemia and pancreatic 
beta cell impairment resulting in defective insulin secretion causing high glucose 
content in the blood (Gilbert and Pratley 2015). Insulin is required for glucose uptake 
into the cell, it activates the GLUT4 intracellular protein vesicles to translocate to the 
plasma membrane and facilitate glucose uptake through the GLUT4 transporter (Merz 
and Thurmond 2020). α-Glucosidase enzyme is present in the epithelium of the small 
intestine, breaking down starch and disaccharides into glucose for absorption into 
the bloodstream (Assefa et  al. 2020). Inhibiting the α-glucosidase enzyme in the 
intestine delays the rate of hydrolytic cleavage of oligosaccharides to monosaccharides. 
Therefore, blocking this enzyme might lessen the postprandial rise in blood glucose 
that causes T2DM (Kumar et  al. 2011). Several drugs are used to treat T2DM, such as 
gliptins, biguanides, sulfonylureas, and thiazolidine derivatives. However, prolonged 
use of these medications can lead to negative side effects like acute pancreatitis, 
headache, lactic acidosis, vomiting, weight gain, hypoglycaemia, and fluid retention 
(Chaudhury et  al. 2017). Helicobacter pylori, a gram-negative spiral bacterium that 
mainly infects the epithelial lining of the stomach, (Hooi et  al. 2017) is the main 
reason behind chronic gastritis and gastric cancer (Malfertheiner et  al. 2007). H. pylori 
is responsive to antibiotics; however, it has been reported that 15% of the patients 
undergoing drug treatment encounter therapeutic failure (Marcus et  al. 2016). 
Ethnomedicinal plants are now being aggressively explored due to their rich thera-
peutic phytochemical contents such as phenolics, flavonoids, tannins, saponins, and 
so on (Eid and Haddad 2014). Natural products are gaining popularity as an alternative 
to current therapies for T2DM and H. pylori-borne disorders due to their promising 
results and minimal adverse effects.

Amomum dealbatum Roxb. is a hardy perennial herb that grows on damp, humus-rich 
soils on hill slopes in North-Eastern India, Thailand, and Southwestern China. It has 
a thick rhizome that can reach a height of 3 m (Sajem and Gosai 2006). This species 
is mostly found in the Nyishi belt of Arunachal Pradesh locally known as ‘Talang or 
Lakchung packang’. They consume its various organs, including stems and flowers as 
boiled vegetables and its seeds are eaten raw as a delicacy. (Lamxay and Newman 
2012) reported using the bark of the plant as an antiseptic while (Dalisay et  al. 2018) 
used the rhizome extract to treat abscesses, rheumatism, and arthritis. In its Leaf 
flavonoids, alkaloids and tannins were identified by Hanifa et  al. (2021). The antioxi-
dant activity of essential oil from rhizomes was investigated by Mohanty et  al. (2023). 
Myricetin, gallic acid and quercetin-3-O-galactoside were identified from the flower 
(Chelleng et  al. 2023) who also mentioned the flower’s potent anti-diabetic properties 
with IC50 values of 5.385 µg/mL. There hasn’t been any reporting on the phytochemical 
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screening of its seeds yet. It is delicate, juicy, dark brown and spherical in shape. 
Therefore, in this preliminary study we made an effort to explore the potential of A. 
dealbatum Roxb. seeds (ADS) for glucose uptake capacity, anti-diabetic, and anti-urease 
through in-vitro analysis. Bioactive and phytochemical compounds were identified by 
HPLC and GC-MS. In-silico docking analysis was employed to predict the binding 
patterns with GLUT4, α-glucosidase and urease enzyme structures.

2.  Results and discussion

The crude methanol extract of ADS yielded 31.25% w/w, and its highest active 
sub-fraction (EASF80) yielded 1.5% w/w. The Preliminary screening analysis of methanol 
extract indicates the presence of alkaloids, flavonoids, phenols, carbohydrates, sapo-
nins, tannins and anthocyanins (Table S1, Supplementary Material (SM)). The GC-MS 
analysis of most active sub-fraction EASF80 results revealed 1-dodecanol, phenol, 
3,5-bis(1,1-dimethylethyl), Oleic Acid and 1-Heptacosanol, etc. which possess 
anti-diabetic and other bioactivities (Table S2, SM). The sub-fraction, EASF80 inhibited 
α-glucosidase and urease enzymes with IC50 values of 5.32 µg/mL (437.46 µg/mL for 
acarbose) and 86.74 μg/mL (39.09 µg/mL for thiourea), respectively (Table S3, SM). The 
bioactive compounds of the most active sub-fraction, EASF80 were identified using 
HPLC-PDA analysis using a C-18 analytical column. The detection wavelength was set 
at 254 nm. The five potential bioactive compounds appeared at retention time sinapic 
acid (18.21 min), quercetin (16.67 min), trans-ferulic acid (19.34 min), gallic acid (3.49 min) 
and p-coumaric acid (18.41 min) (Figure 1) and (Table S4, Figure S2, SM). (Table S5, 
SM) shows the occurrence of these compounds in the same species. The concentra-
tions of these compounds were found to be 0.039, 0.101, 0.052, 0.0003, and 0.3850 mg/
mL, respectively and the calibration curves are in (Table S6, Figure S5, SM). HRMS 
analysis was used to confirm the identified compounds through their mass fragments. 
EASF80’s mass spectra showed the precursor peaks at m/z = 225.137 of sinapic acid 
(Molecular weight = 224), m/z = 302.210 of quercetin (M.W. = 302), m/z = 195.169 of 
trans-ferulic acid (M.W. = 194), m/z = 107.083 of gallic acid (M.W. = 170), and 
m/z = 165.103 of p-coumaric acid (M.W. = 164) as shown in (Figure S4, SM).

Incubation of Rat L6 myoblast cell line with EASF80 and EAF extracts resulted in 
a significant (p < 0.05) and concentration-dependent amelioration of glucose utilisation 
and GLUT4 translocation compared to the control. The concentration of 20 µg/mL was 
significantly (p < 0.05) higher than that of the 5 and 10 µg/mL of the extracts, control 
and FFA (0.75 mM) (Figure S5, SM).

The identified compounds i.e. sinapic, trans-ferulic, gallic, p-coumaric acid and 
quercetin were well subjected to molecular docking with the human GLUT4 trans-
porter, α-glucosidase, and H. pylori urease enzymes based on inhibition assay results. 
Gallic acid formed two H-bonds with human GLUT4 transporter having a binding 
energy of −170.857 kcal/mol, whereas p-coumaric and trans-ferulic acid shared one 
H-bond each with binding energies of −105.867 and −121.68 kcal/mol, respectively 
(Table S7, Figure S8, SM). Gallic acid formed seven H-bonds with α-glucosidase with 
interaction energy of −27.2538 kcal/mol, quercetin with −27.236 kcal/mol formed three 
H-bonds, while sinapic, trans-ferulic, and p-coumaric acid shared only one H-bond 
having interaction energies of −14.1661, −24.4939, and −21.1729 kcal/mol, respectively. 
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Out of all, gallic acid was found to be the most significant one against α-glucosidase 
(Table S8, Figure S9, SM). Docking analysis of H. pylori urease revealed that sinapic 
acid had shown the best protein-ligand interaction by forming five H-bonds with 
−22.0667 kcal/mol binding energy (Table S9, Figure S10, SM). Molecular dynamics 
simulations (MDS) were performed for gallic acid with the α-glucosidase for 50 ns 
while for sinapic acid with H. pylori urease. The RMSD plots of gallic acid with 
α-glucosidase showed stability after 7.5 ns ranging below 0.4 nm and sinapic acid with 
urease showed stability after 15 ns and ranging below 2 nm (Figure S12, S15, SM).

3.  Experimental

See Supplementary Materials.

Figure 1. C hemical structure of (1) sinapic acid (2) quercetin (3) trans-ferulic acid (4) gallic acid 
(5) p-coumaric acid.
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4.  Conclusion

In the present study, the inhibition potential of different extracts of ADS against 
α-glucosidase and H. pylori urease and its glucose uptake capacity were evaluated. 
Five compounds viz., sinapic, p-coumaric, trans-ferulic, gallic acid and quercetin were 
identified from ADS as potential inhibitors. Detailed computational and structural 
insights confirmed considerable interaction between the target proteins and the 
compounds, verified by simulation studies. From our study, it can be concluded that 
ADS, due to its good inhibitory action against both anti-diabetic and anti-urease 
activity, can be further explored as a new natural drug candidate.
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